

INSTALLATION, OPERATION AND MAINTENANCE INSTRUCTIONS

HRSN3 Series

TO PREVENT POTENTIAL INJURY OR DAMAGE TO PROPERTY, READ THIS MANUAL CAREFULLY AND COMPLETELY.

IMPORTANT SAFETY INSTRUCTIONS

Basic safety precautions should always be followed, including the following: Failure to follow instructions can cause severe injury and/or death.

This is the safety-alert symbol. When you see this symbol on your equipment or in this manual, look for one of the following signal words and be alert to the potential for personal injury.

WARNING warns about hazards that could cause serious personal injury, death or major property damage and if ignored presents a potential hazard.

CAUTION warns about hazards that will or can cause minor or moderate personal injury and/or property damage and if ignored presents a potential hazard. It can also make consumers aware of actions that are unpredictable and unsafe.


Notice: A notice indicates special instructions that are important but not related to hazards.

WARNING - Read and follow all instructions in this IOM manual and on the equipment. Failure to follow instructions can cause severe injury and/or death.

WARNING – Risk of Electric Shock. All electrical wiring MUST be in conformance with applicable local codes, regulations, and the National Electric Code (NEC). Hazardous voltage can shock, burn, and cause death or serious property damage. To reduce the risk of electric shock, do NOT use an extension cord to connect unit to electric supply. Provide a properly located electrical receptacle. Before working on any electrical equipment, turn off power supply to the equipment.

WARNING – Ground all electrical equipment before connecting to electrical power supply. Failure to ground all electrical equipment can cause serious or fatal electrical shock hazard.

MARNING - Do NOT ground to a gas supply line.

WARNING – To avoid dangerous or fatal electrical shock, turn OFF power to all electrical equipment before working on electrical connections.

WARNING – Failure to bond all electrical equipment to system structure will increase risk for electrocution and could result in injury or death. To reduce the risk of electric shock, see installation instructions and consult a professional electrician on how to bond all electrical equipment. Also, contact a licensed electrician for information on local electrical codes for bonding requirements.

CAUTION – Potential pinch point. Equipment connected to or driven by this device may start unexpectedly and may cause personal injury or entrapment in linkage systems.

HRSN3 Series

TABLE OF CONTENTS

Table of Contents 3 Actuator Operational Concepts 3 Technical Information 4 Conventions Used in this Manual 4 Actuator Handling And Installation 5 Shipping and Handling 5 Installation Notes 5 Product Mounting and Setup 6 Torque Switches 7 Adjusting CW End of Travel 8 Adjusting CW End of Travel 9 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Offf Control 11 Proportional Control 12 Proportional Calibration 14 120-230VAC Models 14
Technical Information 4 Conventions Used in this Manual 4 Actuator Handling And Installation 5 Shipping and Handling 5 Installation Notes 5 Product Mounting and Setup 6 Torque Switches 7 Adjusting CW End of Travel 8 Adjusting CW End of Travel 9 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Conventions Used in this Manual 4 Actuator Handling And Installation 5 Shipping and Handling 5 Installation Notes 5 Product Mounting and Setup 6 Torque Switches 7 Adjusting CW End of Travel 8 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Actuator Handling And Installation 5 Shipping and Handling 5 Installation Notes 5 Product Mounting and Setup 6 Torque Switches 7 Adjusting CW End of Travel 8 Adjusting CCW End of Travel 9 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Shipping and Handling 5 Installation Notes 5 Product Mounting and Setup 6 Forque Switches 7 Adjusting CW End of Travel 8 Adjusting CCW End of Travel 9 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Installation Notes 5 Product Mounting and Setup 6 Torque Switches 7 Adjusting CW End of Travel 8 Adjusting Auxiliary Switches 9 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Product Mounting and Setup 6 Torque Switches 7 Adjusting CW End of Travel 8 Adjusting CCW End of Travel 9 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Torque Switches 7 Adjusting CW End of Travel 8 Adjusting CCW End of Travel 9 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Adjusting CW End of Travel 8 Adjusting CCW End of Travel 9 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Adjusting CCW End of Travel 9 Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Adjusting Auxiliary Switches 10 Cam Behavior 10 Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Cam Behavior10Auxiliary Switch Cam Mapping10Commissioning11On/Off Control11Proportional Control12Proportional Calibration14
Auxiliary Switch Cam Mapping 10 Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
Commissioning 11 On/Off Control 11 Proportional Control 12 Proportional Calibration 14
On/Off Control
Proportional Control
Proportional Calibration14
•
120-230VAC Models
Calibration - Continued15
Proportional Calibration16
24VAC/DC Models using DCM-MOD-24V16
Calibration - Continued17
Proportional Calibration18
12-24VAC/DC Models using FS-Main
Calibration - Continued19

Troubleshooting
On/Off Models
Troubleshooting
Proportional Models
Mechanical Data
Dimensional Data22
Exploded View
Notes
Wire Sizing Chart
Wiring Diagrams
HRSN3A~3B 12/24VAC/VDC On/Off 26
HRSN3A~3B 12/24VAC/VDC Proportional27
HRSN3A~3B 120/230VAC On/Off 28
HRSN3A~3B 120/230VAC Proportional29
Notes
Notes

This document has active links which can be used with mobile devices. Simply touch a line in the Table of Contents to go directly to that page. Other <u>active links</u> function the same way. The Back to TOC link at the bottom of each page returns to the TOC or Wiring Diagram index.

ACTUATOR OPERATIONAL CONCEPTS

Single phase actuators range in complexity from simple models with basic operability, to quite complicated models with battery backup and local control capabilities. The various models might seem to be easily adaptable across any site or design intent, but are actually very specific as to how they interface to existing or new installations. It is important to FULLY UNDERSTAND what level of control is required prior to selecting one of these products. While it might make sense to opt for the most feature-laden solution in order to cover all the possibilities in a given application, that selection in fact would NOT function in an application that just required the most basic unit.

Notice: Read the project specifications and understand the application before making an actuator selection. If in doubt, consult with the project engineer to clarify what is actually required for a fully operational installation. We have provided in this document all the tools necessary to determine how the various levels interface to the outside world. If there are any questions, please contact Hayward Flow Control Technical Services.

Notice: HRSN3 Series actuators are fully assembled, calibrated and tested prior to leaving our factory. In most cases, after you have mounted the actuator to your device, you should be able to operate the actuator from fully CLOSED (CW) to fully OPEN (CCW) and back again, and find that no adjustments are needed. The assembly can be put into service immediately. However, should it be necessary to make adjustments to the end-of-travel positions to overcome any device related issues (i.e. valve shaft incorrectly timed to the drive stem), the procedures outlined below should be followed to put the assembly into service. Note that there is a maximum adjustment range of +/- 3° at each end of travel.

<u>Pages 8-9</u> - Travel limits for CW (CLOSED) & CCW (OPEN) positions, HRSN3 Series <u>Page 10</u> - Auxiliary switch cams for CW & CCW positions, HRSN3 Series

TECHNICAL INFORMATION

	ACTUATOR SF	PECIFICATIONS	HRSN3A	HRSN3B			
Supply	Torque Output (in-lb / Nm)		880 / 100	1770 / 200			
	Current Draw	(Start / Run / LRA)	7.2A / 5.2A / 17.8A	7.2A / 5.2A / 17.8A			
	Speed (90°) DC	-60Hz/50Hz, seconds	14 / 14	28 / 28			
12VAC*	Motor - 12V DC Perm Magnet 2 Pole Brush		25W	25W			
12VDC*	Duty Cycle (IEC60034)		75% (S2-15 min) / 75% (S4-75%)				
	On/Off / Proportional	Motor Protection, Temp / Class	All - 130°C / Class B				
	rioportionai	Motor Starts, per hour, Max	All -	600			
	Current Draw	(Start / Run / LRA)	4.2A / 3.2A / 11.0A	4.2A / 3.2A / 11.0A			
041/40		-60Hz/50Hz, seconds	14 / 14	28 / 28			
24VAC	Motor - 24V DC Pe	erm Magnet 2 Pole Brush	25W	25W			
24VDC	On/Off /	Duty Cycle (IEC60034)	75% (S2-15 min)	/ 75% (S4-75%)			
24100	Proportional	Motor Protection, Temp / Class	All - 130°(C / Class B			
	•	Motor Starts, per hour, Max	All -				
	Current Draw (Start / Run / LRA)		1.2A / 0.9A / 1.5A	1.2A / 0.9A / 1.5A			
	Speed (90°) 60Hz / 50Hz, seconds		16 / 19	33 / 39			
120VAC	Motor - 120V Capacitor Run TENV		40W	40W			
IZUVAU	On/Off - Std Duty /	Duty Cycle (IEC60034)	25% (S2-15 min)	/ 75% (S4-75%)			
	On/Off - Ext Duty &	Motor Protection, Temp / Class	155°C / Class F /	180°C / Class H			
	Proportional	Motor Starts, per hour, Max	600 /				
		(Start / Run / LRA)	0.5A / 0.4A / 0.7A	0.5A / 0.4A / 0.7A			
	Speed (90°) 60Hz / 50Hz, seconds		16 / 19	33 / 39			
230VAC	Motor - 230V	Capacitor Run TENV	40W	40W			
230 1/10	On/Off - Std Duty /	Duty Cycle (IEC60034)	25% (S2-15 min)				
	On/Off - Ext Duty &	Motor Protection, Temp / Class	155°C / Class F /				
	Proportional	Motor Starts, per hour, Max	600 /	1200			
	Environmental Rating		NEMA 4/4X & IP67				
	Electrical Entry (2)		3/4" EMT or Polyamide gland				
	Control		On/Off, Proportional, 2 Pos RO, RC & 3 Position				
All .	Auxiliary Switch - End of Travel		(2) Form A Volt-Free, Rated 10A @ 250vac				
AII .	Ambient Operating Range		-22°F to +158°F (-30°C to +70°C)				
	Humidity Range		0-95% RH				
	Alti	tude Limit	9850 ft / 3000 m				

CONVENTIONS USED IN THIS MANUAL

Below are Terms and Definitions used throughout this manual.

- 1. XTS/TS product manufactured without/with Torque Switches.
- 2. XFS/FS product manufactured without/with Fail Safe built-in.
- 3. LCS is an industry acronym for a Local Control Station.
- 4. CW is Clockwise and CCW is Counterclockwise.

Use this table to efficiently select the actuator and wiring diagram you require.

ACTUATOR OPTIONS

Control	Voltage	Torque Switches	Fail Safe	Local Control Station	IOM	Wiring Diagram Page
On/Off	12VDC/VAC	XTS/TS	XFS	None	This IOM	<u>26</u>
Proportional	12VDC/VAC	XTS/TS	XFS	None	This IOM	<u>27</u>
On/Off	24VDC/VAC	XTS/TS	XFS	None	This IOM	<u>26</u>
Proportional	24VDC/VAC	XTS/TS	XFS	None	This IOM	<u>27</u>
On/Off	120VAC	XTS/TS	XFS	None	This IOM	<u>28</u>
Proportional	120VAC	XTS/TS	XFS	None	This IOM	<u>29</u>
On/Off	230VAC	XTS/TS	XFS	None	This IOM	<u>28</u>
Proportional	230VAC	XTS/TS	XFS	None	This IOM	<u>29</u>
On/Off / Proportional	24VDC/VAC	XTS/TS	FS	None	HRSN3FSIOM	
On/Off / Proportional	120-230VAC	XTS/TS	FS	None	HRSN3FSIOM	reference correct IOM
On/Off / Proportional*	24VDC/VAC	XTS/TS	XFS	LCS	HRSLCSSPLMNTIOM	reference correct IOM
On/Off / Proportional	120-230VAC	XTS/TS	XFS	LCS	HRSLCSSPLMNTIOM	

^{*} No 24VDC/VAC can be equipped with HRCL/CD options

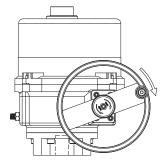
ACTUATOR HANDLING AND INSTALLATION

SHIPPING AND HANDLING

- 1. Position on arrival:
 - A separate actuator arrives in the FULLY CLOSED (CW) position. The red/green position indicator (see illustration) shows RED.
 - A 2 way ball valve assembly arrives in the FULLY OPEN (CCW) position and the position indicator shows GREEN.
 - A 2 way butterfly valve assembly arrives nearly CLOSED (5°) position and the position indicator shows mostly RED.
- 2. Storage: This unit should not be stored outside unless it is powered up and has proper conduit terminations. When not powered up, it should be stored in a clean, dry environment at all times.
- 3. This guarter-turn actuator has been factory tested and calibrated to operate between 0° and 90°. Most products will not require recalibration of these settings. If any travel adjustment is necessary, please refer to the Adjusting CW/CCW End of Travel section for instructions.
- 4. Notice: The HRSN3 Series actuators have mechanical stops which limit rotation. Do not attempt to operate with a rotation greater than 95°.
- 5. Notice: Protect the actuator from moisture by installing it with water tight EMT fittings and proper conduit drainage. Supply power to the unit to keep the internal heater warm at the time of installation.

WARNING - To avoid dangerous or fatal electrical shock, turn OFF power to all electrical equipment before working on electrical connections.

INSTALLATION NOTES



CAUTION – Please follow the following guidelines for proper installation.

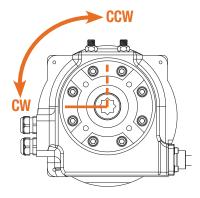
- These actuators are designed to be used between a horizontal and upright position. Do NOT mount the assembly with the actuator top below a horizontal position (i.e. upside down).
- When installing conduit, use proper techniques for entry into the actuator. Use drip loops to prevent conduit condensate from entering the actuator.
- Mechanical travel stops are factory calibrated for 90 degree operation. These stops are NOT designed to adjust mechanical rotation by more than +/- 3 degrees, they are for positioning the handwheel only.
- Both EMT conduit ports MUST use proper equipment to protect the NEMA 4X integrity of the housing.
- The internal heater is to be used in ALL applications.
- Do NOT install the actuator outdoors or in humid environments unless it is powered up and the heater is functioning.
- Use proper wire size to prevent actuator failure (see Wire Sizing Chart for proper wire sizing).
- All terminals accept 12-18AWG solid/stranded wire.
- Notice: Do NOT parallel wire multiple on/off actuators together without utilizing isolation relays. If this is your intention, please contact HAYWARD FLOW CONTROL for a multiple actuator parallel wiring diagram.

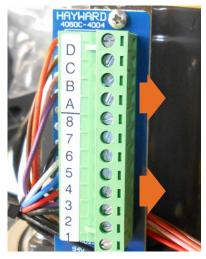
The actuator has a red and green position indicator. RED color in the indicator window means the actuator is fully CW, while GREEN means it is fully CCW.

manual override handwheel allows a user to position the valve or damper with or without power. Turn the handwheel CW to make the output drive move CW (when viewed from above). Turning the handwheel CCW makes the output drive turn CCW.

PRODUCT MOUNTING AND SETUP

Notice: All HRSN3 Series actuators rotate CW to close the output shaft out the bottom of the actuator when viewed from above. On all HRSN3 models, the cam shaft and the indicator rotate CW to close as well.


- 1. Fully CLOSE the valve or damper to which the actuator is to be mounted.
- 2. Assemble necessary linkage hardware and attach the actuator to the valve or damper.
- 3. Center the actuator on the valve or damper drive shaft and tighten all hardware.
- Before applying power to the unit, rotate the manual override handwheel from the fully CW to the fully CCW position to check for unobstructed manual operation of the valve or damper.
- HRSN3 Series actuators utilize a removable terminal block to simplify field wiring and testing.
 - To remove a terminal block from the PCB receiver, pull straight out in a direction parallel to the PCB.
 - In the photo at right, the RIGHT side of either terminal block (between the PCB mounting screws) is pulled out to the RIGHT.
 - wirina. reinsert the terminal strip into receiver. This is a keyed pair and can only be inserted one way.
 - Screw terminals are rated to accept 14AWG down to 18AWG solid or stranded wire. TERMINAL NUMBERING HAS #1 AT THE BOTTOM.
- Refer to your product part number to determine which wiring diagram to follow when wiring up the actuator.
- Note that although terminals are labeled as 1-8 and A-D, not all terminals are used on all models.


CAUTION - Be sure to make field connections to the proper terminal as identified by the LABEL and not the position!

- 8. Make the electrical connections per the appropriate Wiring Diagram for your actuator.
- Connect POWER and CONTROL to the correct terminals.
- 10. Terminals A~D on each actuator are for the (adjustable) auxiliary switches. These are dry type (volt free) Form A contacts rated 250VAC @ 10A Max.
- 11. Select actuators covered in this manual are equipped with torque switches which protect the actuator motor and gear train. Torque switches protect controlled valves or actuators from damage in the event of a high torque condition. More information can be found throughout this manual.

Notice: Torque switches are factory set and are not adjustable.

Note that the rotation seen from below is a mirror of the direction viewed from above.

Removable terminal blocks facilitate ease of field wiring and testing.To remove a terminal block from the PCB receiver, pull straight OUT in a direction parallel to the PCB. Use caution when reinserting block - make sure all pins are aligned before seating.

Torque Switch equipped products have a secondary set of cams/switches to protect actuator, equipment and processes.

TORQUE SWITCHES

WARNING - Torque switches are factory set and are NOT ADJUSTABLE.

Changing these settings will void the actuator warranty.

Torque Switch Operation

Select HRSN3 units have torque switches to protect the actuator and any attached equipment from possible damage which can occur in a high torque event. In such an event the valve or damper being driven encounters some blockage or impediment to travel. In the case of an actuator without torque switches, the actuator will attempt to drive until it

Torque Switch cams and switches are shown in the normal operating position.

Upper torque switch and cam for actuator drive CW rotation

Lower torque switch and cam for actuator drive CCW rotation

either reaches the end of travel or (likely) the motor overworks and trips on a thermal overload. Units with torque switches will cease supplying power to the motor when a high torque event occurs.

Torque Switch (Normal Mode)

- 1. In normal operating mode, the torque switch and drive cam are in the neutral position shown in the photo.
- 2. Internal gearing in line with the output drive provide the rotational action for the cams.
- 3. Upper torque switch protects CW rotation.
- 4. Lower torque switch protects CCW rotation.

Torque Switch cams shown with the upper cam tripping the upper switch (Actuator was driving CW before this trip)

Upper cam has rotated counter clockwise from its neutral position and has engaged the switch.

Torque Event (CW)

- 1. The photo at left shows a high torque event in the CW direction
- 2. The torque switch CW drive cam (upper) and switch are in the tripped position.
- 3. When the torque switch trips, it immediately cuts off power flow to the motor for that direction of travel.

Torque Switch cams shown with the lower cam tripping the lower switch (Actuator was driving CCW before this trip)

Lower cam has rotated clockwise from its neutral position (above) and has engaged the switch.

Torque Event (CCW)

- 1. The photo at left shows a high torque event in the CCW direction
- 2. The torque switch CCW drive cam (lower) and switch are in the tripped position.
- 3. When the torque switch trips, it immediately cuts off power flow to the motor for that direction of travel.

Back to TOC

ADJUSTING CW END OF TRAVEL

This actuator has been factory calibrated and tested to stop at 0 degrees for CW position and to stop at 90 degrees for CCW position. Most installations onto valves or dampers will likely not require recalibration of these settings. Please mount the valve or damper and proceed on these pages **only** if adjustments are required. Note that for most actuators these positions are independent - for instance the CW position is accurate while the CCW position might need adjustment.

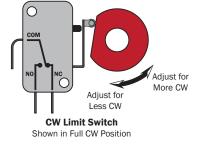
A

WARNING – Serious Damage to the actuator will result if the motor is allowed to drive the gear train into the mechanical stop! Remove power from this device BEFORE making any travel adjustments.

CW Mechanical Stop

Cam 1 - CW Cam

CW Mechanical Stop


CAUTION! - The mechanical stop screw limits handwheel operation ONLY and is NOT to be used as an electrical travel limiting device.

Reposition Mechanical Stop

- 1. Disconnect power.
- Loosen the RIGHT SIDE mechanical stop. This is the CW mechanical stop limit adjustment. Using a 17mm wrench and a 5mm hex key, hold the jam nut and turn the stop screw 5-6 turns CCW so it clears the mechanical boss inside the actuator.
 - This will allow you to adjust the cam/switch stop position without running into the mechanical stop screw.
- 3. Use the manual override handwheel to position the actuator to your required CW position. Keep all changes within +/- 3 degrees of the factory setting.

Adjust CW Cam (Bottom)

- 4. Cam 1 is the bottom cam (red) and is the end-of-travel adjustment for the actuator CW position. With POWER OFF and the actuator at its required CW position, use a sharp 2.5mm hex key to free up the cam set screw. Take care not to let the hex key slip at this stage, it can easily strip out. Once it is free adjust it as described below:
 - Rotate the hex key to the RIGHT 10-15 degrees until you hear a click. This will reset the switch roller arm.
 - Gently tighten (CW) the set screw only until slight pressure is felt. Ideally the set screw rides along the camshaft.
 - Now SLOWLY rotate the hex key to the LEFT, pushing the cam, until you hear the "click" on the bottom switch. The click means correct adjustment has been achieved.

- Tighten the cam set screw.
- **5. Apply power** and test for the correct CW position:
 - Drive the actuator CCW at least 15-20 degrees.
 - Drive the actuator CW until the cam stops the electrical travel.
 - Check to be sure this is the correct CW position you require.
 Repeat the steps of item 4 if further adjustment is needed.

Tighten Mechanical Stop

- With the actuator in the proper position. Hold the 17mm wrench on the RIGHT SIDE jam nut to prevent the jam nut from locking and turn the 5mm hex key CW until the end of the stop screw bottoms out against the internal stop boss
- Turn the hex key ONE FULL TURN CCW and lock this position with the jam nut. Now the actuator will reach its end of travel electrically before there is any interference from the mechanical stop.
- 3. CW position calibration is now complete.

Back to TOC

ADJUSTING CCW END OF TRAVEL

This actuator has been factory calibrated and tested to stop at 0 degrees for CW position and to stop at 90 degrees for CCW position. Most installations onto valves or dampers will likely not require recalibration of these settings. Please mount the valve or damper and proceed on these pages **only** if adjustments are required. Note that for most actuators these positions are independent - for instance the CW position is accurate while the CCW position might need adjustment.

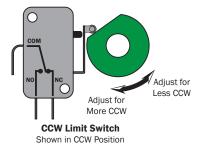
A

WARNING – Serious Damage to the actuator will result if the motor is allowed to drive the gear train into the mechanical stop! Remove power from this device BEFORE making any travel adjustments.

CCW Mechanical Stop

Cam 2 - CCW Cam

CCW Mechanical Stop


CAUTION! - The mechanical stop screw limits handwheel operation ONLY and is NOT to be used as an electrical travel limiting device.

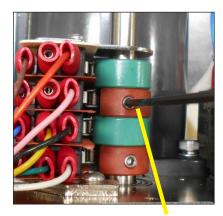
Reposition Mechanical Stop

- 1. Disconnect power.
- Loosen the LEFT SIDE mechanical stop. This is the CCW mechanical stop limit adjustment. Using a 17mm wrench and a 5mm hex key, hold the jam nut and turn the stop screw 5-6 turns CCW so it clears the mechanical boss inside the actuator.
 - This will allow you to adjust the cam/switch stop position without running into the mechanical stop screw.
- 3. Use the manual override handwheel to position the actuator to your required CCW position. Keep all changes within +/- 3 degrees of the factory setting.

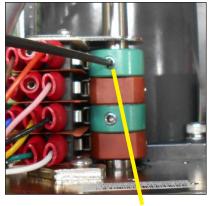
Adjust CCW Cam (Second from Bottom)

- 4. Cam 2 is the second cam up from the bottom (green) and is the end-of-travel adjustment for the actuator CCW position. With POWER OFF and the actuator at its required CCW position, use a sharp 2.5mm hex key to free up the cam set screw. Take care not to let the hex key slip at this stage, it can easily strip out. Once it is free adjust it as described below:
 - Rotate the hex key to the LEFT 10-15 degrees until you hear a click. This will reset the switch roller arm.
 - Gently tighten (CW) the set screw only until slight pressure is felt. Ideally the set screw rides along the camshaft.
 - Now SLOWLY rotate the hex key to the RIGHT, pushing the cam, until you hear the "click" on the bottom switch. The click means correct adjustment has been achieved.

- Tighten the cam set screw.
- **5. Apply power** and test for the correct CCW position:
 - Drive the actuator CW at least 15-20 degrees.
 - Drive the actuator CCW until the cam stops the electrical travel.
 - Check to be sure this is the correct CCW position you require. Repeat the steps of item 4 if further adjustment is needed.

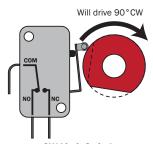

Tighten Mechanical Stop

- With the actuator in the proper position, hold the 17mm wrench on the LEFT SIDE jam nut to prevent the jam nut from locking and turn the 5mm hex key CW until the end of the stop screw bottoms out against the internal stop boss.
- 2. Turn the hex key ONE FULL TURN CCW and lock this position with the jam nut. Now the actuator will reach its end of travel electrically before there is any interference from the mechanical stop.
- CCW position calibration is now complete.


Back to TOC

ADJUSTING AUXILIARY SWITCHES

This actuator has been factory calibrated and tested to stop at 0 degrees for CW position and to stop at 90 degrees for CCW position. The Auxiliary Switch settings are based on those stops. Ideally the Auxiliary Switches are set a few degrees in advance of the respective stop switches, so if you had adjusted either the CW or CCW you may need to adjust these as well.

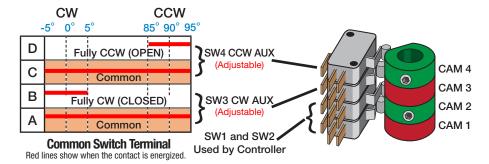


Cam 3 - CW Auxiliary Cam

Cam 4 - CCW Auxiliary Cam

CAM BEHAVIOR

CW Limit Switch Shown in CCW Position


Adjust CW Auxiliary Cam

- Cam 3 is the third cam up from the bottom (red) and is the CW auxiliary switch adjustment, an optional switch typically used to indicate the actuator reached its CW position.
- 2. Drive the actuator to its CW position. Use a sharp 2.5mm hex key to free up the cam set screw. **Take care not to let the hex key slip at this stage, it can easily strip out.** Once it is free adjust it as described below:
 - Rotate the hex key to the RIGHT 10-15 degrees until you hear a click. This will reset the switch roller arm.
 - Gently tighten (CW) the set screw only until slight pressure is felt. Ideally the set screw rides along the camshaft.
 - Now SLOWLY rotate the hex key to the LEFT, pushing the cam, until you hear the "click" on the bottom switch.
 - Continue to rotate the cam between 3 and 5 degrees to the LEFT to make sure the auxiliary cam switch changes state before the actuator reaches its end of travel electrically.
 - Tighten the cam set screw.

Adjust CCW Auxiliary Cam

- 1. Cam 4 is the fourth cam up from the bottom (green) and is the CCW auxiliary switch adjustment, an optional switch typically used to indicate the actuator reached its CCW position.
- 2. Drive the actuator to its CCW position. Use a sharp 2.5mm hex key to free up the cam set screw. Take care not to let the hex key slip at this stage, it can easily strip out. Once it is free adjust it as described below:
 - Rotate the hex key to the LEFT 10-15 degrees until you hear a click. This will reset the switch roller arm.
 - Gently tighten (CW) the set screw only until slight pressure is felt. Ideally the set screw rides along the camshaft.
 - Now SLOWLY rotate the hex key to the RIGHT, pushing the cam, until you hear the "click" on the bottom switch.
 - Continue to rotate the cam between 3 and 5 degrees to the RIGHT to make sure the auxiliary cam switch changes state before the actuator reaches its end of travel electrically.
 - Tighten the cam set screw.

AUXILIARY SWITCH CAM MAPPING

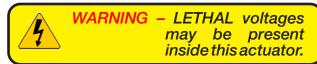
Back to TOC

ON/OFF CONTROL

COMMISSIONING

The end stop travel (cams) of this actuator have been factory set and tested to respond between 0° and 90° degrees rotation. If NO changes to end stops are required, this unit is ready to be put into service immediately using this procedure. IF changes to the cam positions are required, refer to pages 8 ~ 10 before proceeding.

Conceptually this procedure first establishes correct direction and control; these MUST be verified in order to proceed. Any actuator must drive CW when commanded to do so, and STOP when the actuator reaches the full CW travel position. The same applies for the CCW operation.


WARNING - Follow these directions carefully and in order. Actuator damage due to improper testing and commissioning will NOT be covered under warranty.

Notice: This procedure has many sections with the text "**IMMEDIATELY remove power from the actuator to STOP movement**". Quick action is necessary in case of any unexpected or uncontrolled movement to keep the actuator from possibly driving into the mechanical stops, past the limits of the valve or damper attached, and to simply keep the actuator in a known position for a quick, efficient installation.

Commissioning - Non-LCS actuators - On/Off Control

After the actuator and valve (damper) assembly have been installed with power and control connected, BEFORE applying power, use the handwheel to rotate the actuator to a mid-travel position.

- 1. Be sure there are NO movement commands active, and apply power.
 - A. The actuator should NOT move.
 - If it does move, IMMEDIATELY remove power from the actuator to STOP movement.
 - a. Proceed to step 2.
 - II. If it does NOT move, proceed to step 3.
- 2. Check control wiring to terminals 1~8 on the actuator.
 - A. Remove field wiring from terminals 4, 6 & 7, then place a jumper between terminals 4 & 7. Do NOT apply external power to any of these terminals.
 - B. Re-apply power. The actuator will move CW.
 - C. After confirmation, remove power, then remove the jumper between terminals 4 & 7, and place a jumper between terminals 6 & 7.
 - D. Re-apply power, and the actuator will move CCW.
 - E. After confirmation, remove power, then remove the jumper between terminals 6 & 7, and replace the field wiring to terminals 4, 6 & 7.
 - F. Repeat step 1.
- Generate a remote CW move command and verify the DIRECTION of the position indicator is CW.
 - If it is NOT, there is a problem with the field logic or wiring, troubleshoot accordingly.
 - B. On HRSN3~4 Series torque switch equipped units, during CW travel movement, depress the lever on the UPPER torque switch to interrupt

actuator movement as a check of the system.

- C. If it is, proceed to step 4.
- 4. **Generate a remote CCW move command** and verify the DIRECTION of the position indicator is CCW.
 - A. If it is NOT, there is a problem with the field logic or wiring, troubleshoot accordingly.
 - B. On HRSN3~4 Series torque switch equipped units, during CCW travel movement, depress the lever on the LOWER torque switch to interrupt actuator movement as a check of the system.
 - C. If it is, proceed to step 5.
- 5. If the actuator does NOT stop at the correct positions, fails to move in the correct directions, or on fails to stop movement when the respective torque switch levers are depressed, IMMEDIATELY STOP the operation of the actuator and refer to the Table of Contents for the section to reference for the corrective action needed.
- Return Field control to automatic mode. Actuator is now commissioned and operational.

A

WARNING – Serious Damage to the actuator will result if the motor is allowed to drive the gear train into the mechanical stop! Remove power from this device BEFORE making any travel adjustments.

Back to TOC

COMMISSIONING

The end stop travel (cams) of this actuator have been factory set and tested to respond between 0° and 90° degrees rotation. If NO changes to end stops are required, this unit is ready to be put into service immediately using this procedure. IF changes to the cam positions are required, refer to pages 8 ~ 10 before proceeding.

Conceptually this procedure first establishes correct direction and control; these MUST be verified in order to proceed. Any actuator must drive CW when commanded to do so, and STOP when the actuator reaches the full CW travel position. The same applies for the CCW operation.

WARNING – Follow these directions carefully and in order. Actuator damage due to improper testing and commissioning will NOT be covered under warranty.

Notice: This procedure has many sections with the text "**IMMEDIATELY remove power from the actuator to STOP movement**". Quick action is necessary in case of any unexpected or uncontrolled movement to keep the actuator from possibly driving into the mechanical stops, past the limits of the valve or damper attached, and to simply keep the actuator in a known position for a guick, efficient installation.

Commissioning - Non-LCS actuators - Proportional Control

- 1. After the actuator and valve (damper) assembly have been installed with power and control connected, BEFORE applying power, use the handwheel to rotate the actuator to a mid-travel position.
- 2. Set the control signal selection jumpers, refer to the Proportional PCB detail page.
- 3. Generate a mid-travel command (12mA), and apply power.
 - A. The actuator should move only to match the incoming signal, if at all.
 - If the actuator moves and continues to move away from midpoint, IMMEDIATELY remove power from the actuator to STOP movement.
- WARNING LETHAL voltages may be present inside this actuator.
- Place a meter in series with terminal 3 (sig-in)
 (- lead) and the wire coming from the field controller (+ lead), it MUST read +12mA (with power ON).
 - i. If it does NOT, check the polarity of the incoming analog signal to make sure it is (+)12mA.
 - ii. Return to step 3.
- II. If the actuator moves momentarily and then STOPS at the mid stroke position, proceed to step 4.
- III. If the actuator does not move at all, rotate the handwheel slightly in either direction to offset the controller.
 - a. The actuator should move back to the midpoint position and then STOP.
 - b. Proceed to step 4.
- 4. Generate a CW move command (4mA) and verify the DIRECTION of the position indicator is CW.
 - A. The actuator should run CW and run until it reaches its CW end of travel position.
 - B. While power is on, an analog feedback signal OUT provides an electronic position of the actuator... i.e. 4mA = full CW and 20mA = full CCW positions (reference actuator terminals #5 (+) and #6(-)).
 - C. On HRSN3~4 Series torque switch equipped units, during CW travel movement, depress the lever on the UPPER torque switch to interrupt actuator movement as a check of the system.
- 5. Generate a CCW move command (20mA) and verify the DIRECTION of the position indicator is CCW.
 - A. The actuator should run CCW and run until it reaches its CW end of travel position.

WARNING – Serious Damage to the actuator will result if the motor is allowed to drive the gear train into the mechanical stop! Remove power from this device BEFORE making any travel adjustments.

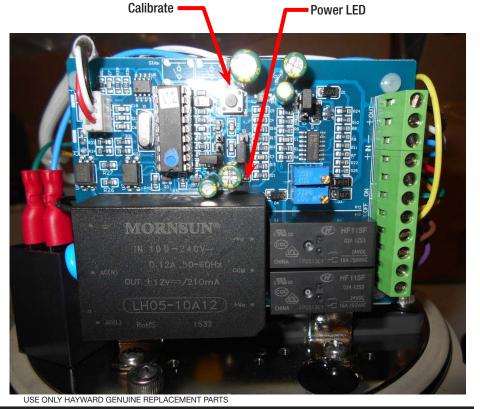
Back to TOC

COMMISSIONING - CONTINUED

- B. While power is on, an analog feedback signal OUT provides an electronic position of the actuator... i.e. 4mA = full CW and 20mA = full CCW positions.
- C. On HRSN3~4 Series torque switch equipped units, during CCW travel movement, depress the lever on the LOWER torque switch to interrupt actuator movement as a check of the system.
- 6. If the actuator does NOT stop at the correct positions, fails to move in the correct directions, or fails to stop movement when the respective torque switch levers are depressed, IMMEDIATELY STOP the operation of the actuator and refer to the Table of Contents for the section to reference for the corrective action needed.
- 7. Check the full scale response of the analog signals into and out of the actuator by referring to the section: Calibration Proportional Control for the proper voltage of the actuator.
- 8. If the actuator stops at the correct positions and generates a feedback signal representative of the position of the actuator, the actuator can be put into service and is fully operational.

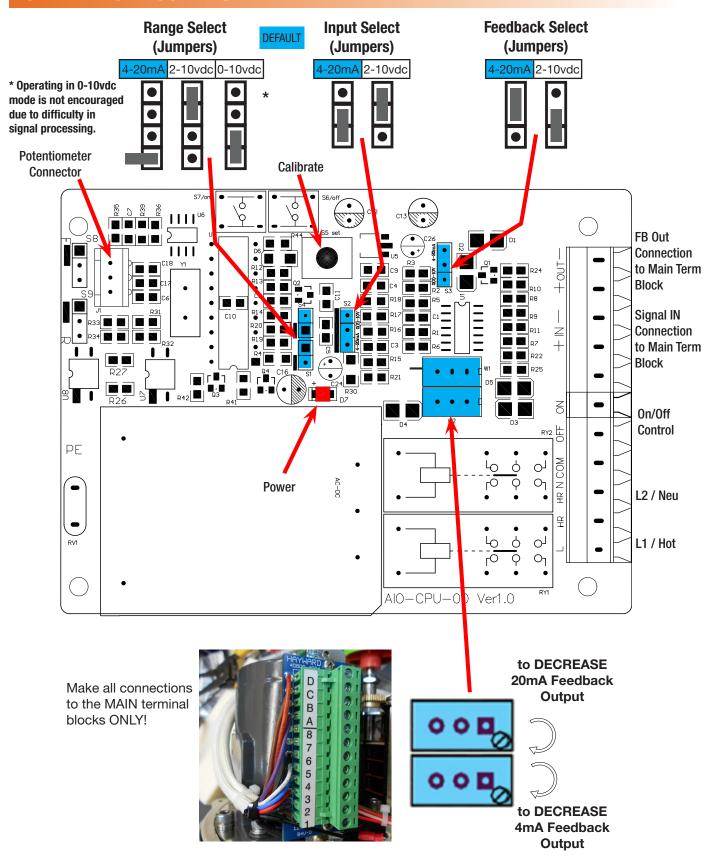
PROPORTIONAL CALIBRATION

WARNING – Follow these directions carefully and in order. Actuator damage due to improper calibration will NOT be covered under warranty.


Calibration Procedure - Proportional Control

After completing all mounting and wiring procedures and the commissioning has been performed, it is now possible to calibrate the analog response of the actuator.

- 1. Before applying power or making any wiring connections:
- 2. Set the jumper headers for correct signal IN and OUT. (ref next page)
- 3. Apply correct power according to the actuator model.
 - A. The red PWR LED will turn on.
- 4. **Press the "Calibrate" black pushbutton** on the Mod control board and hold it down for about three seconds, then release.
 - A. The unit will run to its full CCW position, stop for a few seconds, then run back to its full CW position.
 - B. Wait 20 seconds, the unit will complete the calibration routine and will return to active operation mode by responding to the incoming 4-20mA control signals being sent to the actuator.
- 5. Slight adjustments may be made to the 4mA and 20mA trimmers to affect accuracy on the feedback signal as a function of actuator position.
- 6. Unit is now calibrated and is ready to be put into service. No other calibration is necessary.


Alignment of the sector and potentiometer gear sets at actuator full CW position. (reference only).

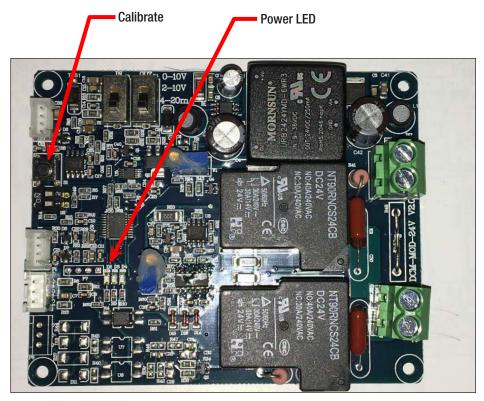
Back to TOC

CALIBRATION - CONTINUED

24VAC/DC Models using DCM-MOD-24V

PROPORTIONAL CALIBRATION

WARNING – Follow these directions carefully and in order. Actuator damage due to improper calibration will NOT be covered under warranty.


Calibration Procedure - Proportional Control

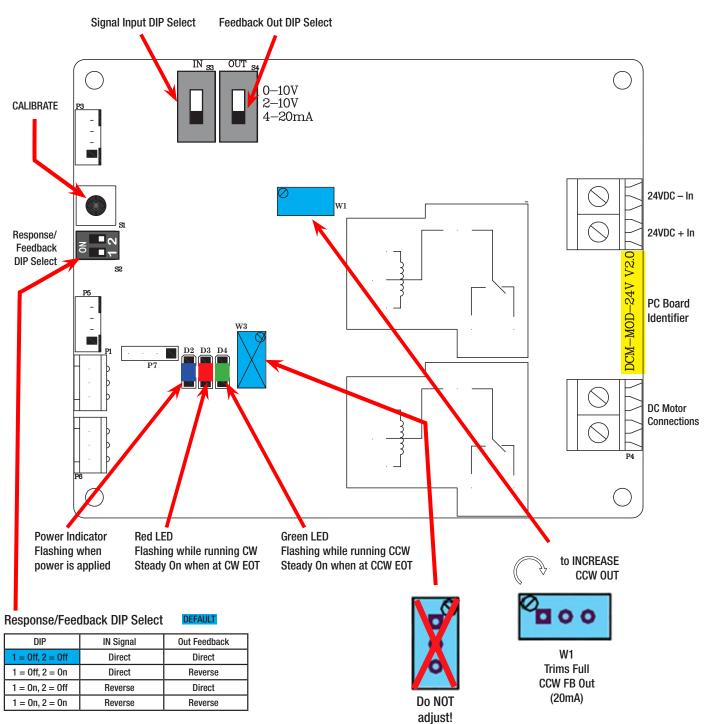
After completing all mounting and wiring procedures and the commissioning has been performed, it is now possible to calibrate the analog response of the actuator.

- 1. Before applying power or making any wiring connections:
- 2. Set the DIP switches for correct signal IN and feedback OUT and Response/ Feedback. (ref next page)
- 3. Apply correct power according to the actuator model.
 - A. The blue Power LED will begin flashing.
- 4. **Press the "Calibrate" black pushbutton** on the Mod control board and hold it down for about three seconds, then release.
 - A. The unit will run to its full CCW position, stop for a few seconds, then run back to its full CW position.
 - B. Wait 20 seconds, the unit will complete the calibration routine and will return to active operation mode by responding to the incoming 4-20mA control signals being sent to the actuator.
- 5. Slight adjustments may be made to the 20mA trimmer (W1) to affect accuracy on the feedback signal as a function of actuator position.
- 6. Unit is now calibrated and is ready to be put into service. No other calibration is necessary.
- 7. Note that upon loss of SIGNAL, the actuator response will be as follows:
 - DIP1 = OFF, the unit will go to the fully CW position, until the SIGNAL is restored.
 - DIP 1 = ON, the unit will go to the fully CCW position until the SIGNAL is restored.

Alignment of the sector and potentiometer gear sets at actuator full CW position. (reference only).

Back to TOC

24VAC/DC Models using DCM-MOD-24V


CALIBRATION - CONTINUED

DEFAULT

DIP	MODE
Тор	0-10V
Mid	2-10V
Btm	4-20mA

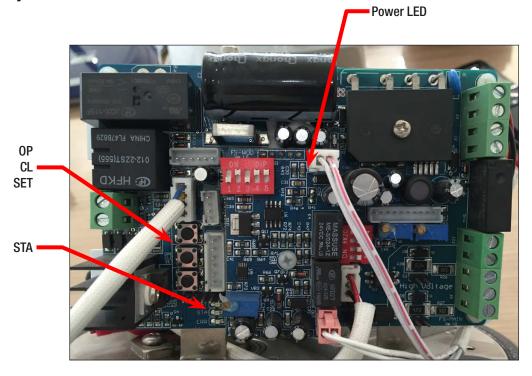
DIP	MODE
Тор	0-10V
Mid	2-10V
Btm	4-20mA

Back to TOC

12-24VAC/DC Models using FS-MAIN

PROPORTIONAL CALIBRATION

WARNING - Follow these directions carefully and in order. Actuator damage due to improper calibration will NOT be covered under warranty.

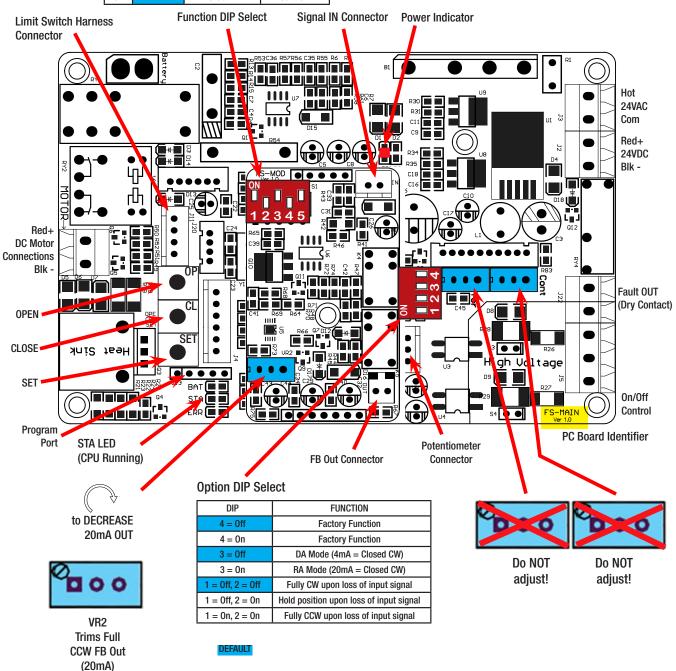

Calibration Procedure - Proportional Control

After completing all mounting and wiring procedures and the Commissioning has been performed, it is now possible to calibrate the analog response of the actuator.

- 1. Position the actuator to a mid-stroke position.
- 2. Apply correct power according to the actuator model.
 - A. The blue POWER LED will turn on, and the green LED STA will turn on.
- 3. Press the "SET" black pushbutton on the Mod control board and hold it down for about three seconds, then release.
 - A. The grn STA LED will turn off and the unit will drive to the full CCW (Open) position. The actuator will stop when the pre-set cam positions are reached.
 - B. There are NO LED indicators to advise when the actuator is running.
- 4. When the actuator stops, press the OP pushbutton ONCE.
 - A. The actuator will drive to its full CW (Closed) position and stop when the pre-set cam positions are reached.
 - B. There are NO LED indicators to advise when the actuator is running.
- When the actuator stops, press the CL pushbutton ONCE.
- 6. After data is stored (about 10 20 seconds), the unit will start to respond to the incoming 4-20mA control signals being sent to the actuator.
- 7. Slight adjustments may be made to trimmer VR2 if necessary to tune the feedback signal (20mA full CCW position only).
- 8. Unit is now calibrated and is ready to be put into service. No other calibration is necessary.

Alignment of the sector and potentiometer gear sets at actuator full CW position. (reference only)

Back to TOC



CALIBRATION - CONTINUED

Function DIP Select

DEFAULT

DIP	ON	0FF	FUNCTION	
1	4-20mA	0(2)-10V	Input	
2	0-10V	2-10V/4-20mA	прис	
3	4-20mA	0(2)-10V	Feedback	
4	0-10V	2-10V/4-20mA	reeuback	
5	Mod	On/Off	Control	

TROUBLESHOOTING

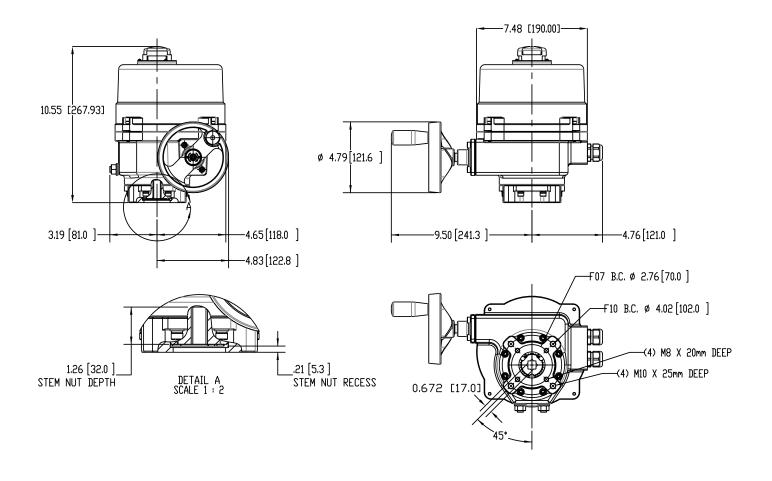
WARNING – To avoid dangerous or fatal electrical shock, turn OFF power to all electrical equipment before working on electrical connections. If it is necessary to troubleshoot with live power to the actuator, please use EXTREME CAUTION, and follow your company's safety protocols and procedures at all times.

After completing all mounting and wiring procedures and main power is available, if the actuator does NOT respond as expected, the following procedure(s) may help in identifying the problem.

Symptom	Target	Action				
Actuator does	Power Source	Measure incoming power AT the actuator terminal block. Reference the correct wiring diagram.				
not move when commanded to do so.	Control Problem	Generate move commands by the field device. Measure correct voltage changes between HOT and terminal #6 (CCW) and HOT and terminal #4 (CW).				
	Wire Sizing	Check for correct wire size per Wire Sizing Chart.				
	Overhansus	Remove the actuator from the driven device. If the actuator now moves, the torque required by the mechanical device exceeds that of the actuator. Increase actuator size.				
Supply and controls are	Overtorque	With the actuator removed from the mechanical equipment, manually rotate the valve or damper through its intended range of travel to check for mechanical problems.				
measured to be correct, but actuator still does not move.	Insufficient power supply and/or incorrect wire size during installation.	Measure the voltage between terminals 1 & 2 WHILE commanding the actuator to move. The measured voltage cannot drop more than 10%.				
	Cams improperly set.	REMOVE POWER. Check to see if cams rotate freely on the cam shaft using your finger. Cams MUST be secure and set according to the procedures in the Adjusting CW/CCW End of Travel section.				
Motor is extremely	Control "noise" or	Check for stray voltage fluctuations on the incoming control signals. The on/off line voltage actuators have a maximum 25% duty cycle. While the low voltage models have a 75% duty cycle.				
hot to the touch.	excessive duty cycle	Check for parallel wiring of multiple on/off actuators. Review the site as-built wiring diagrams to verify.				
Actuator does not stop at correct position at either end of travel	Travel cams and/or mechanical stops not positioned correctly	Reset end-of-travel cams and/or mechanical stops as detailed in the Adjusting CW/CCW End of Travel section.				

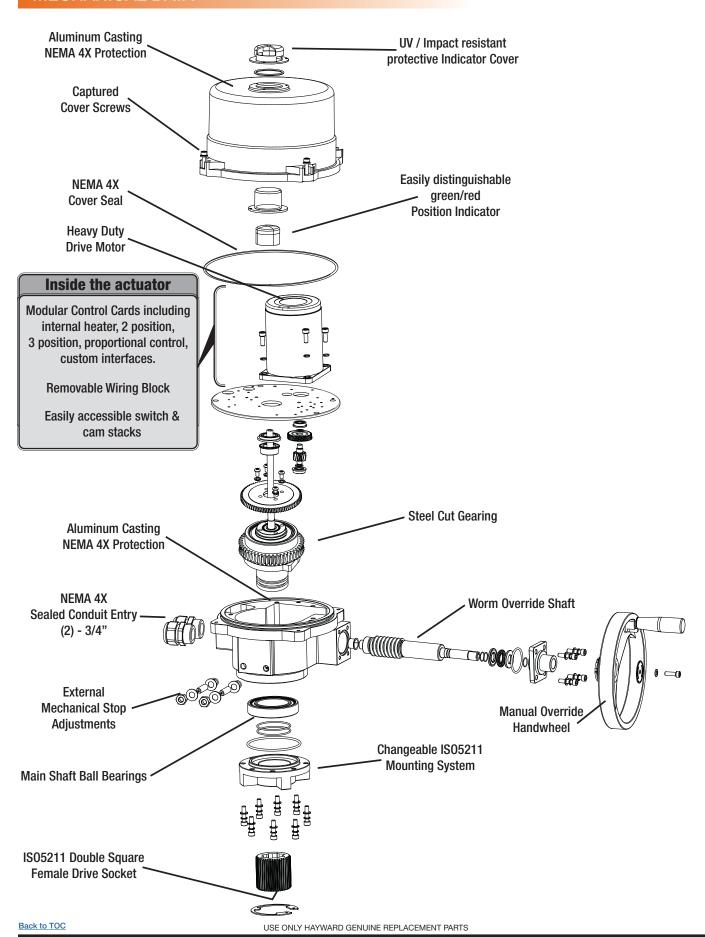
PROPORTIONAL MODELS

TROUBLESHOOTING

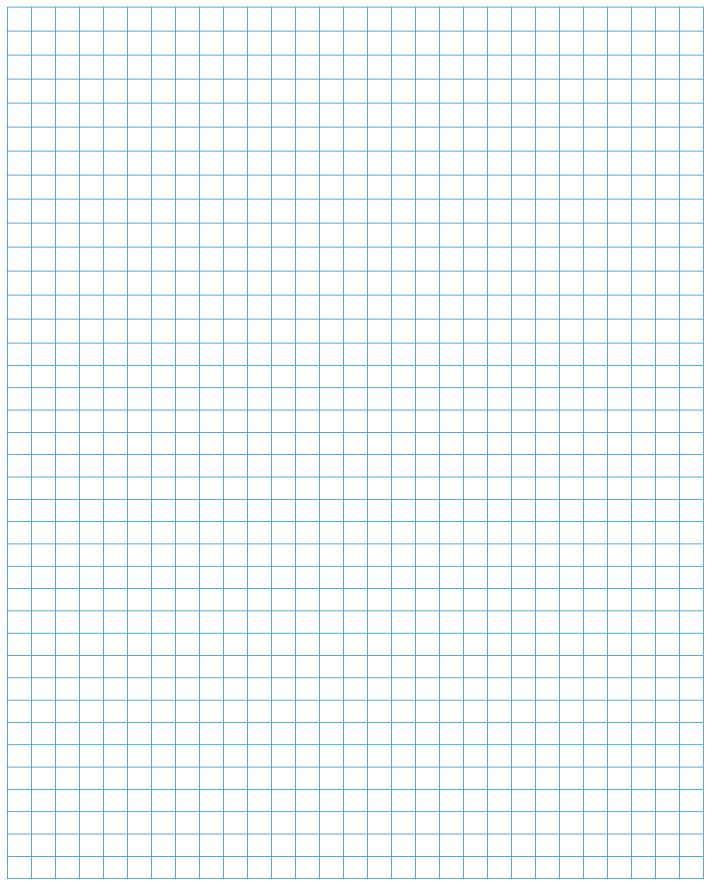

WARNING – To avoid dangerous or fatal electrical shock, turn OFF power to all electrical equipment before working on electrical connections. If it is necessary to troubleshoot with live power to the actuator, please use EXTREME CAUTION, and follow your company's safety protocols and procedures at all times.

After completing all mounting and wiring procedures and main power is available, if the actuator does NOT respond as expected, the following procedure(s) may help in identifying the problem.

Symptom	Target	Action				
Actuator does not move when commanded to do so.	Power Source	Measure incoming power AT the actuator terminal block. Reference the correct wiring diagram.				
	Control Problem	Generate move commands by the field device. For most analog control systems, reversing the polarity will render the control system output as invalid. Check the polarity of the analog control signals as they are connected to the actuator. The actuator will NOT respond to inverted control signals.				
	Wire Sizing	Check for correct wire size per Wire Sizing Chart.				
	Overterane	Remove the actuator from the driven device. If the actuator now moves, the torque required by the mechanical device exceeds that of the actuator. Increase actuator size.				
Supply and controls are	Overtorque	With the actuator removed from the mechanical equipment, manually rotate the valve or damper through its intended range of travel to check for mechanical problems.				
measured to be correct, but actuator still does not move.	Insufficient power supply and/or incorrect wire size during installation.	Measure the voltage between terminals 1 & 2 WHILE commanding the actuator to move. The measured voltage cannot drop more than 10%.				
	Cams improperly set.	REMOVE POWER. Check to see if cams rotate freely on the cam shaft using your finger. Cams MUST be secure and set according to the procedures in the Adjusting CW/CCW End of Travel section.				
Motor is extremely hot to the touch.	Control "noise" or excessive duty cycle	Check for stray voltage fluctuations on the incoming control signals. Analog control signals are succeptable to "noise" and send unstable control data to the actuator. This results in a never-ending motor drive scenario with the usual result being thermal overload of the drive motor.				
		Check for parallel wiring of multiple on/off actuators. Review the site as-built wiring diagrams to verify.				
Actuator does not stop at correct position at either end of travel	Travel cams and/or mechanical stops not positioned correctly	Reset end-of-travel cams and/or mechanical stops as detailed in the Adjusting CW/CCW End of Travel section.				



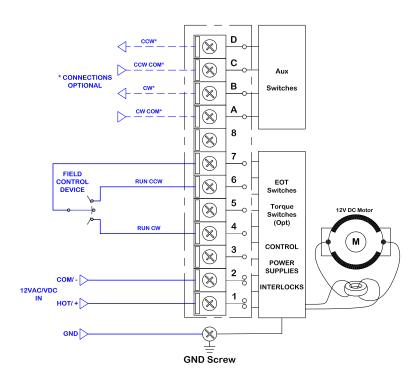
MECHANICAL DATA


COVER CL	HAN	WEIGHT		
MODEL	IN/MM	IN/MM	# TURNS FOR 90°	LBS/KG
HRS3A	8 / 200	4.79 / 122	12.5 turns 90°	28.6 / 13
HRS3B	8 / 200	4.79 / 122	12.5 turns 90°	28.6 / 13

MECHANICAL DATA

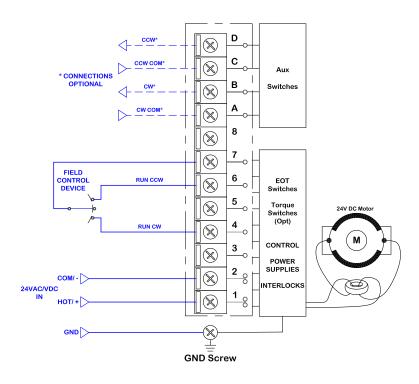
WIRE SIZING CHART

Wire sizing data is provided in the table below to assist in the selection of the proper wire size for HRSN3 Series actuators using various wire sizes over distance. Be sure to reference the correct voltage and do not exceed the indicated length of the wire run for each model.

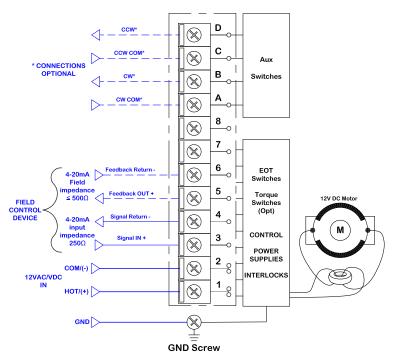

WARNING - To avoid dangerous or fatal electrical shock, turn OFF power to all electrical equipment before working on electrical connections.

Maximum distance between Actuator and Power Supply (ft)

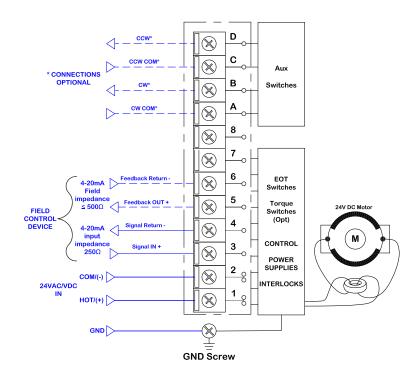
ACTUATOR	HRSN3A	HRSN3B	HRSN3A	HRSN3B	HRSN3A	HRSN3B	HRSN3A	HRSN3B
Voltage	12VAC/VDC	12VAC/VDC	24VAC/VDC		120VAC	120VAC	230VAC	230VAC
AWG Amps	7.2	7.2	4.2	4.2	1.2	1.2	0.5	0.5
20	-	-	-	-	448	448	2060	2060
18	-	-	41	41	712	712	3275	3275
16	-	-	65	65	1132	1132	5206	5206
14	30	30	103	103	1800	1800	8281	8281
12	48	48	164	164	2862	2862	13167	13167
10	76	76	260	260	4550	4550	20930	20930
8	121	121	414	414	7238	7238	33295	33295



HRSN3A3B 12vac/vdc On/Off

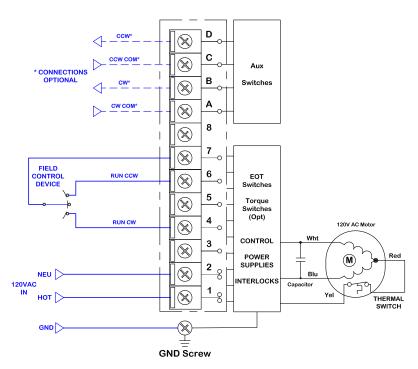

- √ On/Off Control
- ✓ ★ Torque Switches
 - ★ Battery Backup
 - **★** LCS

HRSN3A3B 24vac/vdc On/Off

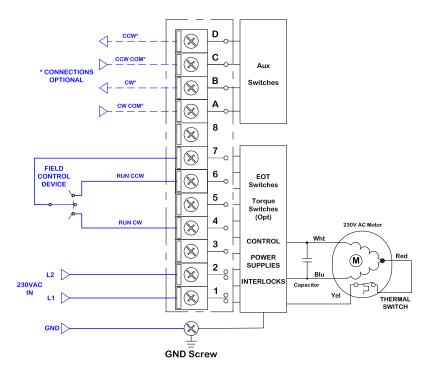


HRSN3A3B 12vac/vdc Proportional

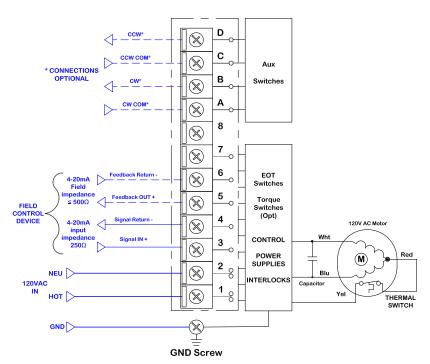
- √ Proportional Control
- ✓ ★ Torque Switches
 - ★ Battery Backup
 - **★** LCS


HRSN3A3B 24vac/vdc Proportional

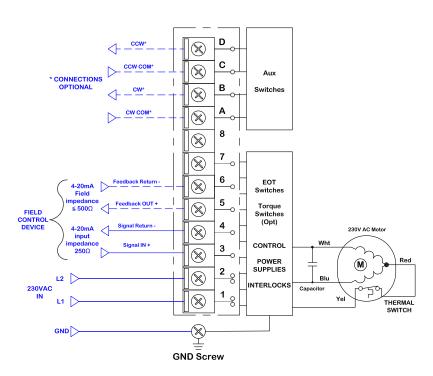
Back



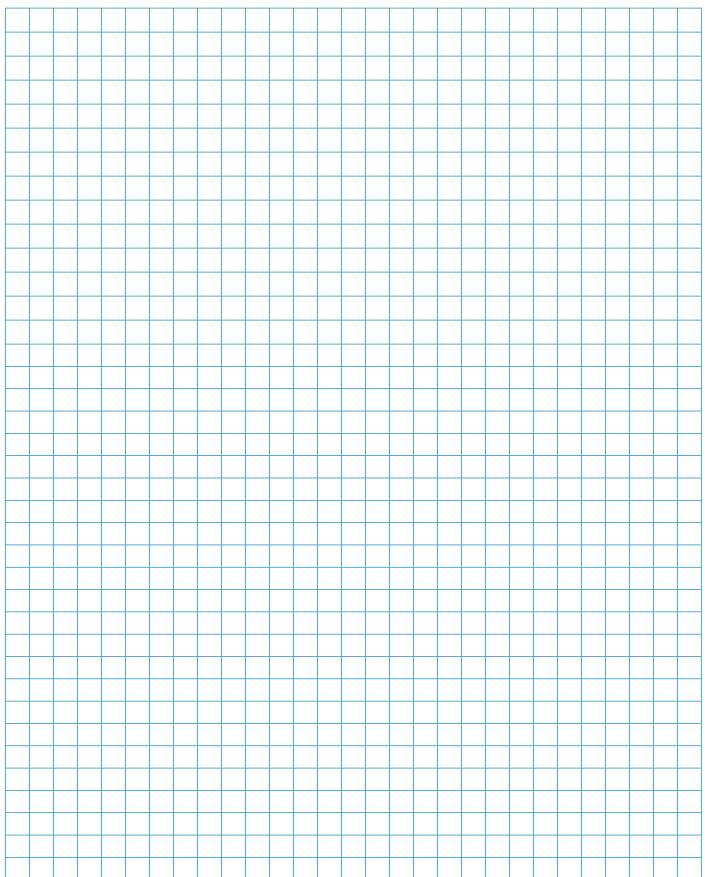
HRSN3A3B 120vac On/Off


- √ On/Off Control
- ✓ ★ Torque Switches
 - ★ Battery Backup
 - **★** LCS

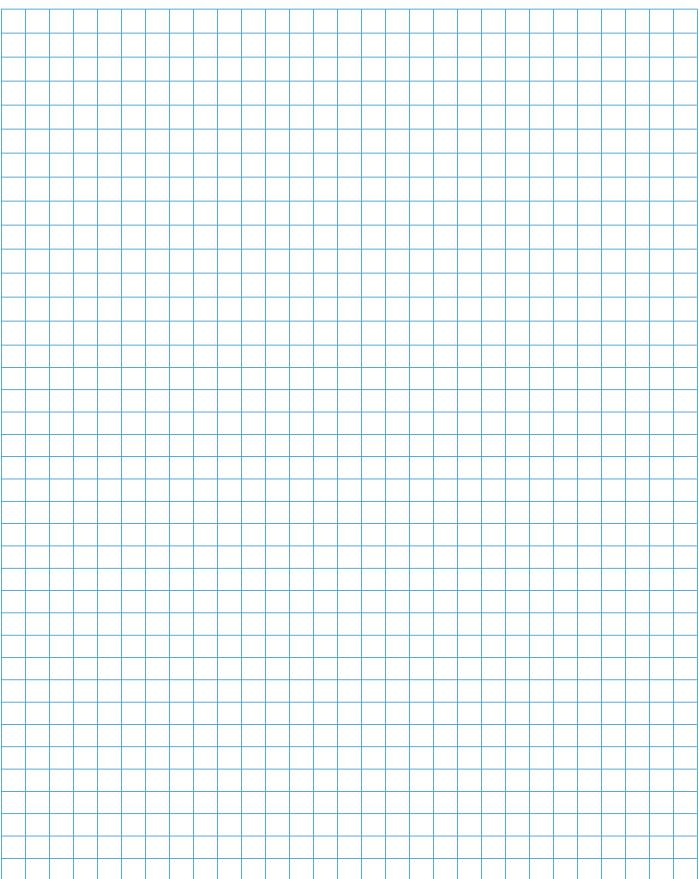
HRSN3A3B 230vac On/Off



HRSN3A3B 120vac Proportional


- √ Proportional Control
- ✓ ★ Torque Switches
 - ★ Battery Backup
 - **★** LCS

HRSN3A3B 230vac Proportional



This page intentionally left blank

