Formulas for Calculating Flow Rate From a Vessel

The following formulas are for calculating the rate at which a fluid will flow from a tank when the fluid level is maintained constant (h is constant). The discharge coefficient C_{d} depends on the configuration of the outlet. Some typical values for discharge coefficient are shown below.

Bottom Opening

$q=C_{d}(a) \sqrt{2 g h}$

Side Opening
$q=C_{d}(a) \sqrt{2 g h}$

EXAMPLES

EXAMPLE ONE

An open tank is continuously fed with water such that the height from the water surface to the outlet is maintained at 60". The outlet has a 1 " diameter bulkhead fitting (comparable to a short tube outlet). The outlet area is calculated by:

$$
\mathrm{a}=\frac{\pi \mathrm{d}^{2}}{4}=\frac{\pi\left(1^{2}\right)}{4}=0.7854 \mathrm{in}^{2}
$$

The flow of water through the outlet is given by:

$$
\mathrm{q}=0.81(0.7854) \sqrt{2(386) 60}=137 \mathrm{in}^{3} / \mathrm{sec}
$$

[^0]
[^0]: This flow rate is equivalent to about 36 gpm .

