Calculating the Time Required to Empty a Vessel

The following formulas are based on turbulent flow of a Newtonian fluid through an outlet (orifice) in a tank. The discharge coefficient C_{d} depends on the configuration of the outlet. Some typical values for discharge coefficient are shown at right.
Variables: $\mathrm{h}=$ elevation of tank
$D=$ diameter of tank
A = orifice area (t^{2})
$\mathrm{G}=$ gravitational acceleration $=32.2 \mathrm{ft} / \mathrm{sec}^{2}$
$\Delta t=$ time required to empty tank (sec)

low

$\mathrm{C}_{\mathrm{d}}=0.81$

$C_{d}=0.98$

EXAMPLES

EXAMPLE ONE

VERTICAL CYLINDRICAL TANK

$$
\Delta t=\frac{\pi D^{2}}{C_{d} A} \sqrt{\frac{h}{8 G}}
$$

A vertical cylindrical tank 12 ' in diameter is fitted with a 2" Hayward bulkhead fitting (comparable to a short tube outlet). The area of the outlet is:

$$
\Delta t=\frac{\pi D_{\text {oft }}^{2}}{4(144)}=\frac{\pi 2^{2}}{4(144)}=0.0218 \mathrm{ft}^{2}
$$

If the tank is filled with water to a height of 20°, and we assume turbulent flow, the approximate time to empty the tank is given by:

$$
\Delta t=\frac{\pi 12^{2}}{0.81(0.0218)} \sqrt{\frac{20}{8(32.2)}}=7,139 \mathrm{sec}
$$

The tank should be empty in about 2 hours.

EXAMPLE TWO
HORIZONTAL CYLINDRICAL TANK

$$
\Delta t=\frac{L\left\{D^{3 / 2}-(D-h)^{3 / 2}\right\}}{3 C_{d} A} \sqrt{\frac{8}{G}}
$$

A 7' diameter by 9^{\prime} long horizontal cylindrical tank has a 4 " diameter sharp edged orifice outlet. The area of the outlet is:

$$
\Delta t=\frac{\pi D^{2} \text { oft }}{4(144)}=\frac{\pi 4^{2}}{4(144)}=0.0873 \mathrm{ft}^{2}
$$

If the tank is filled with water to a height of 5^{\prime}, and we assume turbulent flow, the approximate time to empty the tank is given by:

$$
\Delta t=\frac{9\left\{7^{3 / 2}-(7-5)^{3 / 2}\right\}}{3(0.61) 0.0873} \sqrt{\frac{8}{(32.2)}}=440 \mathrm{sec}
$$

The tank should be empty in about 7 minutes.

EXAMPLE THREE CONICAL TANK

$$
\Delta t=\frac{\pi h^{5 / 2} \tan ^{2} \theta}{5 \mathrm{C}_{\mathrm{d}} \mathrm{~A}} \sqrt{\frac{8}{G}}
$$

A conical tank with a taper angle of 25° is fitted with a 2" diameter short tube type outlet. The area of the outlet is:

$$
\Delta t=\frac{\pi D^{2} \text { oft }}{4(144)}=\frac{\pi 2^{2}}{4(144)}=0.0218 \mathrm{ft}^{2}
$$

If the tank is filled with water to a height of 28 ', and we assume turbulent flow, the approximate time to empty the tank is given by:

$$
\Delta t=\frac{\pi\left(28^{5 / 2}\right) \tan ^{2} 25^{\circ}}{5(0.81) 0.0128} \sqrt{\frac{2}{32.2}}=8,000 \mathrm{sec}
$$

The tank should be empty in about 2-1/4 hours.

